
Resource-bounded alternating-time temporal logic

Natasha Alechina
University of Nottingham

Nottingham, UK
nza@cs.nott.ac.uk

Brian Logan
University of Nottingham

Nottingham, UK
bsl@cs.nott.ac.uk

Nguyen Hoang Nga
University of Nottingham

Nottingham, UK
hnn@cs.nott.ac.uk

Abdur Rakib
University of Nottingham

Nottingham, UK
rza@cs.nott.ac.uk

ABSTRACT
Many problems in AI and multi-agent systems research are most
naturally formulated in terms of the abilities of a coalition of agents.
There exist several excellent logical tools for reasoning about coali-
tional ability. However, coalitional ability can be affected by the
availability of resources, and there is no straightforward way of
reasoning about resource requirements in logics such as Coalition
Logic (CL) and Alternating-time Temporal Logic (ATL). In this
paper, we propose a logic for reasoning about coalitional ability
under resource constraints. We extend ATL with costs of actions
and hence of strategies. We give a complete and sound axiomatisa-
tion of the resulting logic Resource-Bounded ATL (RB-ATL) and
an efficient model-checking algorithm for it.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: [multiagent systems]

General Terms
Theory, Verification

Keywords
Logics for agency, Verification of MAS

1. INTRODUCTION
In many situations a group of agents can cooperate to achieve an

outcome which cannot be achieved by any agent in the group acting
individually. For example, in the prisoners dilemma, a single pris-
oner cannot ensure the optimal outcome, while a coalition of two
prisoners can. Similarly, it may be possible for a set of cooperating
agents to solve a difficult computational problem by distributing it,
while a single agent may not have sufficient memory or processor
power to solve it. In the latter case, there is an interaction between
the amount of resources available to the agents (or the amount of
resources which they are willing to contribute), and their ability to
achieve their goal.

In this paper we propose a logic, RB-ATL, for reasoning about
coalitional ability under resource constraints. RB-ATL allows us to
express and verify properties such as

Cite as: Resource-bounded alternating-time temporal logic, Natasha
Alechina, Brian Logan, Hoang Nga Nguyen and Abdur Rakib, Proc. of
9th Int. Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2010), van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.),
May, 10–14, 2010, Toronto, Canada, pp.�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

(1) ‘a coalition of agents A has a strategy for achieving a property
φ provided they have resources b, but they cannot enforce φ
under a tighter resource bound b1’,

(2) ‘A has a strategy to maintain the property φ with resources b’,

(3) ‘A can maintain φ until ψ becomes true provided A has re-
sources b’.

There exists work on introducing resource bounds in coalition
logic [3] and temporal logic [5]. We believe that our contribution
presents a significant advance on this work. Specifically, the logic
RBCL defined in [3] can express properties of the form (1) but not
of the form (2) and (3) (since it generalises Coalition Logic and
does not have the full set of temporal operators). Also, [3] does
not analyse model-checking complexity of RBCL. In [5], a logic
RTL∗ is introduced, which is CTL∗ extended with quantifiers rep-
resenting the cost of paths. Using CTL∗ as a starting point means
that only single-agent systems can be analysed in RTL∗. The set-
ting of [5] is also different from the one presented in this paper,
in that the actions not only consume but also produce resources.
The model-checking problem for RCTL∗ is quite complex; only
partial solutions (e.g. for RCTL rather than RCTL∗ where actions
only consume resources) are presented in [5]. No axiomatisation
of RCTL∗ is given.

The rest of this paper is organised as follows. In section 2, we
present the syntax and semantics of RB-ATL. In section 3 we pro-
vide a sound and complete axiomatisation of RB-ATL. In section 4,
we give a model-checking algorithm for RB-ATL. Finally, we sur-
vey related work and conclude. The Appendix contains some of
the proofs.

2. SYNTAX AND SEMANTICS OF RB-ATL
Consider a system of agents which can perform actions to change

the state (we assume concurrent execution of actions by all agents).
We denote the set of agents by N . In order to reason about re-
sources, we assume that actions have costs. Let R be a set of re-
sources (such as money, energy, or anything else which may be
required by an agent for performing an action). We assume that
a cost of an action, for each of the resources, is a natural number.
The set of resource bounds B over R is defined as B = N

r , where
r = |R|.
2.1 Syntax of RB-ATL

The syntax of RB-ATL is defined as follows, where A is a non-
empty subset of N and b ∈ B.

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | 〈〈Ab〉〉 © ϕ | 〈〈Ab〉〉�ϕ | 〈〈Ab〉〉ϕUψ

481

481-488



Here, 〈〈Ab〉〉© ϕ means that a coalition A can ensure that the next
state satisfies ϕ under resource bound b. 〈〈Ab〉〉�ϕ means that A
has a strategy to make sure that ϕ is always true, and the cost of
this strategy is at most b. Similarly, 〈〈Ab〉〉ϕUψ means that A has a
strategy to enforce ψ while maintaining the truth of ϕ, and the cost
of this strategy is at most b.

The corresponding operators for the empty coalition are defined
as follows:

〈〈∅b〉〉 © ϕ =df ¬〈〈Nb〉〉 © ¬ϕ

〈〈∅b〉〉�ϕ =df ¬〈〈Nb〉〉�U¬ϕ

〈〈∅b〉〉ϕUψ =df ¬(〈〈Nb〉〉¬ψU¬(ϕ ∨ ψ) ∨ 〈〈Nb〉〉�¬ψ)

We explain why we make the 〈〈∅b〉〉 modalities definable rather
than primitive symbols after the truth definition for RB-ATL.

2.2 Semantics of RB-ATL
To interpret this language, we extend the definition of concur-

rent game structures [4] with resource requirements for executing
actions. For consistency with [4], in what follows we refer to agents
as ‘players’ and actions as ‘moves’.

DEFINITION 1. A Resource-bounded Concurrent Game Struc-
ture (RB-CGS) is a tuple S = (n, r, Q, Π, π, d, c, δ) where:

• n ≥ 1 is the number of players (agents), we denote the set of
players {1, . . . , n} by N

• r is the number of resources

• Q is a non-empty set of states

• Π is a finite set of propositional variables

• π : Q → ℘(Π) is a function which assigns each state in Q a
subset of propositional variables

• d : Q × N → N is a function which indicates the number of
available moves (actions) for each player a ∈ N at a state
q ∈ Q such that d(q, a) ≥ 1. At each state q ∈ Q, we denote
the set of joint moves available for all players in N by D(q).
That is

D(q) = {1, . . . , d(q, 1)} × . . . × {1, . . . , d(q, n)}

• c : Q×N ×N → B is a partial function which indicates the
minimal amount of resources required by each move avail-
able to each agent at a specific state.

• δ : Q×N
|N| → Q is a partial function where δ(q, m) is the

next state from q if the players execute the move m ∈ D(q).

We denote by 0 the smallest resource bound (0, . . . , 0). We assume
that each agent in each state has an available action with 0 cost
(intuitively, it has the option of doing nothing).

Given a RB-CGS S, we denote the set of infinite sequences of
states (computations) by Qω . For a computation λ = q0q1 . . . ∈
Qω , we use the notation λ[i] = qi and λ[i, j] = qi . . . qj . We
denote the set of finite non-empty sequences of states by Q+.

DEFINITION 2. Given a RB-CGS S and a state q ∈ Q, a move
(or a joint action) for a coalition A ⊆ N is a tuple σA = (σa)a∈A

such that 1 ≤ σa ≤ d(q, a).

By DA(q) we denote the set of all moves for A at state q. Given
a move m ∈ D(q), we denote by mA the actions executed by A,
mA = (ma)a∈A. We define the set of all possible outcomes of a
move σA ∈ DA(q) at state q as follows:

out(q, σA) = {q′ ∈ Q | ∃m ∈ D(q) : mA = σA∧q′ = δ(q, m)}
The cost of a move σA ∈ DA(q) is defined as cost(q, σA) =
Σa∈Ac(q, a, σa). (Note that we use c for the cost of single actions
and cost for the cost of joint actions).

DEFINITION 3. Given a RB-CGS S, a strategy for a subset of
players A ⊆ N is a mapping FA which associates each sequence
λq ∈ Q+ to a move in DA(q).

A computation λ ∈ Qω is consistent with FA iff for all i ≥ 0,
λ[i+1] ∈ out(λ[i], FA(λ[0, i])). We denote by out(q, FA) the set
of all such sequences λ starting from q, i.e. where λ[0] = q.

To compare costs and resource bounds, we use the usual point-
wise vector comparison, that is, (b1, . . . , br) ≤ (d1, . . . , dr) iff
bi ≤ di for i ∈ {1, . . . , r}. We also use pointwise vector addition:
(b1, . . . , br) + (d1, . . . , dr) = (b1 + d1, . . . , br + dr).

DEFINITION 4. Given a bound b, a computation λ ∈ out(q, FA)
is b-consistent with FA iff, for every i ≥ 0,

i
X

j=0

cost(λ[i], FA(λ[0, i])) ≤ b.

We denote by out(q0, FA, b) the set of all b-consistent computa-
tions. A strategy FA is a b-strategy iff out(q, FA) = out(q, FA, b)
for any q ∈ Q.

In other words, all executions of a b-strategy cost at most b re-
sources. Note that this means that each computation of such a
strategy starts with a finite prefix where some non-0 cost actions
are executed, and continues with an infinite sequence of 0-cost ac-
tions.

2.3 Truth definition for RB-ATL
Given a RB-CGS S = (n, r, Q, Π, π, d, c, δ), the truth definition

for RB-ATL is given inductively as follows:

• S, q |= p iff p ∈ π(q)

• S, q |= ¬ϕ iff S, q �|= ϕ

• S, q |= ϕ ∨ ψ iff S, q |= ϕ or S, q |= ψ

• S, q |= 〈〈Ab〉〉 © ϕ iff there exists a b-strategy FA such that
for all λ ∈ out(q, FA), S, λ[1] |= ϕ iff there is a move
σA ∈ DA(q) such that for all q′ ∈ out(σA), S, q′ |= ϕ

• S, q |= 〈〈Ab〉〉�ϕ iff there exists a b-strategy FA for any
λ ∈ out(q, FA), S, λ[i] |= ϕ for all i ≥ 0

• S, q |= 〈〈Ab〉〉ϕUψ iff there exists a b-strategy FA such that
for all λ ∈ out(q, FA), there exists i ≥ 0 such that S, λ[i] |=
ψ and S, λ[j] |= ψ for all j ∈ {0, . . . , i − 1}

Note that given the definition of 〈〈∅b〉〉 © ϕ as ¬〈〈Nb〉〉 © ¬ϕ,
its truth definition is

• S, q |= 〈〈∅b〉〉 © ϕ iff for every b-strategy FN for all λ ∈
out(q, FA), S, λ[1] |= ϕ

482



Intuitively, 〈〈∅b〉〉 © ϕ means that ϕ is inevitably true in the next
state provided that the grand coalition N executes a move which
costs no more than b. Observe that if we used the same truth
definition for empty and non-empty coalition modalities, then all
〈〈∅b〉〉©ϕ formulas (for any b) would be equivalent and mean sim-
ply that ϕ is inevitable in the next state. A similar collapse would
happen for 〈〈∅b〉〉� and 〈〈∅b〉〉 U temporal operators as well. For
this reason, we have chosen to make empty coalition modalities a
special (definable) case.

3. AXIOMATISATION
In this section we present the axiomatic system for RB-ATL. To

make the formulas below more readable, we define the following
abbreviations:

〈〈Ab〉〉 © �ϕ =
W

b1+b2=b,b1 �=0
〈〈Ab1〉〉 © 〈〈Ab2〉〉�ϕ

〈〈Ab〉〉 © ϕUψ =
W

b1+b2=b,b1 �=0
〈〈Ab1〉〉 © 〈〈Ab2〉〉ϕUψ

The axiomatic system consists of the following axioms and rules of
inference, where A, A1 and A2 are non-empty subsets of N , and b,
b1, b2 ∈ B.

Axioms.

(PL) Tautologies of Propositional Logic

(⊥) ¬〈〈Ab〉〉 © ⊥
(�) 〈〈Ab〉〉 © �
(B) 〈〈Ab1〉〉 © ϕ → 〈〈Ab2〉〉 © ϕ

where b1 ≤ b2

(S) 〈〈Ab1
1
〉〉©ϕ∧ 〈〈Ab2

2
〉〉©ψ → 〈〈(A1 ∪A2)

b1+b2〉〉© (ϕ∧ψ)
where A1 ∩ A2 = ∅

(S∅) 〈〈∅b1〉〉 © ϕ ∧ 〈〈∅b2〉〉 © ψ → 〈〈∅b1〉〉 © (ϕ ∧ ψ)
where b1 ≤ b2

(SN ) 〈〈Nb1〉〉 © ϕ ∧ 〈〈∅b2〉〉 © ψ → 〈〈Nb1〉〉 © (ϕ ∧ ψ)
where b1 ≤ b2

(FP�) 〈〈Ab〉〉�ϕ ↔ ϕ ∧ (〈〈Ab〉〉 © �ϕ ∨ 〈〈A0〉〉 © (〈〈Ab〉〉�ϕ)

(FPU ) 〈〈Ab〉〉ϕUψ ↔ ψ

∨(ϕ ∧ (〈〈Ab〉〉 © ϕUψ ∨ 〈〈A0〉〉 © 〈〈Ab〉〉ϕUψ))

(N©) 〈〈∅b〉〉 © ϕ ↔ ¬〈〈Nb〉〉 © (¬ϕ)

(N�) 〈〈∅b〉〉�ϕ ↔ ϕ ∧ ¬〈〈Nb〉〉�U¬ϕ

(NU ) 〈〈∅b〉〉ϕUψ ↔ ¬(〈〈Nb〉〉¬ψU¬(ϕ ∨ ψ) ∨ 〈〈Nb〉〉�¬ψ)

Inference rules.

(MP) ϕ, ϕ → ψ

ψ

(〈〈Ab〉〉©-Monotonicity) ϕ → ψ

〈〈Ab〉〉 © ϕ → 〈〈Ab〉〉 © ψ

(〈〈∅b〉〉�-Necessitation) ϕ

〈〈∅b〉〉�ϕ

(〈〈Ab〉〉�-Induction)

θ → (ϕ ∧ (〈〈Ab〉〉 © �ϕ ∨ 〈〈A0〉〉 © θ))

θ → 〈〈Ab〉〉�ϕ

(〈〈Ab〉〉U-Induction)

(ψ ∨ (ϕ ∧ (〈〈Ab〉〉 © ϕUψ ∨ 〈〈A0〉〉 © θ))) → θ

〈〈Ab〉〉ϕUψ → θ

Before proving soundness and completeness, we give an intuitive
explanation of the axioms and compare them with the axiomatic
system for ATL given in [7].

First of all, observe that with the resource bounds removed, the
axioms (⊥), (�), (S), (N©) and the inference rules (〈〈Ab〉〉©-
Monotonicity) and (〈〈∅b〉〉�-Necessitation) are identical to their ATL
counterparts. The axiom (B) says that if A can enforce ϕ under a
resource bound b1, then it can also enforce ϕ if it has more than
b1 resources. Note that for the empty coalition, the relationship be-
tween the bounds is reversed: an outcome which is inevitable when
the grand coalition can only use b resources, is also inevitable when
the grand coalition can use fewer resources:

〈〈∅b〉〉 © ϕ → 〈〈∅d〉〉 © ϕ for d ≤ b

With resource bounds removed, this axiom obviously becomes triv-
ial. The axiom (FP�) is similar to its ATL counterpart. However,
unlike in ATL, there are two ways to ‘unwind’ 〈〈Ab〉〉�ϕ in RB-
ATL: one way is to make a move which costs a non-trivial amount
of resources b1, and then maintain ϕ with b − b1 resources; the
second way is to make a trivial 0-cost move, and then maintain ϕ
with b resources. Similarly for (FPU ). Finally, the rules (〈〈Ab〉〉�-
Induction) and (〈〈Ab〉〉U-Induction) correspond to the ATL axioms
(GFP�) and (LFPU ); the first one says that � corresponds to the
greatest fixed point and the second that U corresponds to the least
fixed point. This will be made more precise after we give fixed
point characterisations of the temporal operators.

3.1 Fixed point characterisations of temporal
operators

Consider an operation [〈〈Ab〉〉©] which given a set of states X ,
returns the set of states from where A can enforce an outcome to
be in X under resource bound b (this is the same as Pre(A, X, b)
defined in Section 4, which is in turn similar to Pre from [4]):

DEFINITION 5. [〈〈Ab〉〉©] : ℘(Q) → ℘(Q) is defined as fol-
lows: given a set X ⊆ Q, [〈〈Ab〉〉©](X) is the set

{q | ∃σ ∈ DA(q) : cost(σ) ≤ b ∧ out(q, σ) ⊆ X}
Let us define ‖ϕ‖ = {q ∈ Q | S, q |= ϕ}. It is straightforward

that:

‖〈〈Ab〉〉 © ϕ‖ = [〈〈Ab〉〉©](‖ϕ‖)
Recall that if f is a monotone operator 2Q −→ 2Q (that is,

X ⊆ Y implies f(X) ⊆ f(Y )), then X is a fixed point of f if
F (X) = X . By the Knaster-Tarski theorem, f has the least and
the greatest fixed point. The least fixed point of f is denoted by
μX.f(X) and the greatest fixed point by νX.f(X). We are going
to show that the meanings of � and U correspond to the greatest
and the least fixed points of certain operations on sets of states.

LEMMA 1. For all q ∈ Q, the following fixed point characteri-
sations hold:

1. q ∈ ‖〈〈Ab〉〉�ϕ‖ iff q ∈ νX.‖ϕ‖ ∩ (‖〈〈Ab〉〉 © �ϕ‖ ∪
[〈〈A0〉〉©](X)) iff there is a b-strategy FA for A such that
for all λ ∈ out(q, FA), λ[i] ∈ ‖ϕ‖ for all i ≥ 0

2. q ∈ ‖〈〈Ab〉〉ϕ Uψ‖ iff q ∈ μX.‖ψ‖ ∪ (‖ϕ‖ ∩ (‖〈〈Ab〉〉 ©
ϕUψ‖ ∪ [〈〈A0〉〉©](X))) iff there is a b-strategy FA for A
such that for all λ ∈ out(q, FA), there exists i ≥ 0 such that
λ[i] ∈ ‖ψ‖ and λ[j] ∈ ‖ϕ‖ for all j ≤ i

483



A proof of Lemma 1(1) is given in the Appendix. The second part
of the lemma can be proved in a similar way.

3.2 Soundness of RB-ATL
We prove that the axioms of RB-ATL are valid.

(⊥) is valid because there is no b-strategy FA such that for all λ ∈
out(q, FA), λ[1] makes ⊥ true.

(�) is valid because A has a 0-strategy FA such that for all λ ∈
out(q, FA), λ[1] makes � true.

(B) is valid because if there is a b1-strategy FA such that for all
λ ∈ out(q, FA), λ[1] makes ϕ true, then the same FA is also
a b2-strategy which has the same property.

(S) is valid because if there exists a strategy FA1 to enforce ϕ and
a strategy FA2 to enforce ψ, then there exists a joint strategy
FA1∪A2 (with the same moves for A1 and A2 as FA1 and
FA2 , respectively) to enforce both ϕ and ψ.

(SN ) is valid because if there exists a b1-strategy FN to enforce
ϕ, and for all strategies of N which cost at most b2 ψ is
inevitable, then ϕ ∧ ψ can be enforced in by FN . (S∅) is
obvious; (N©), (N�) and (NU ) correspond to definitions.

(FP�) is valid by Lemma 1(1) and (FPU ) by by Lemma 1(2).

(〈〈Ab〉〉©-Monotonicity), (〈〈Ab〉〉�-Monotonicity) and
(〈〈Ab〉〉 U-Monotonicity) clearly preserve validity, since if
‖ϕ‖ ⊆ ‖ψ‖ and an outcome in ‖ϕ‖ can be enforced, then
an outcome in ‖ψ‖ can also be enforced by the same strat-
egy.

(〈〈∅b〉〉�-Necessitation) is valid since if ϕ is logically true, then it
is inevitable in perpetuity.

(〈〈Ab〉〉�-Induction) and (〈〈Ab〉〉U-Induction) preserve validity by
Lemma 1.

3.3 Completeness of RB-ATL
The proof of completeness is based on [7]. We construct a satis-

fying model for a formula ϕ0 which is consistent with the axiomatic
system for RB-ATL.

In the proof, we assume when convenient that all formulas are
in negation normal form of RB-ATL; the precise definitions of nor-
mal form RB-ATL and semantics for ¬〈〈Ab〉〉 © ϕ, ¬〈〈Ab〉〉�ϕ
and ¬〈〈Ab〉〉ϕ Uψ are similar to that for ATL and omitted due to
the lack of space. We also treat 〈〈∅b〉〉© as a primitive symbol in
normal form RB-ATL, with the truth definition given earlier in the
paper.

The model is constructed in a way very similar to the construc-
tion in [7]. It is assembled from finite trees where nodes are labelled
by sets of formulas. First we define the set of formulas used in the
labelling.

DEFINITION 6. The closure cl(ϕ0) is the smallest set of formu-
las satisfying the following closure conditions:

• all sub-formulas of ϕ0 including ϕ0 itself are in cl(ϕ0)

• if 〈〈Ab〉〉�ϕ is in cl(ϕ0), then so are 〈〈Ab1〉〉 © 〈〈Ab2〉〉�ϕ

for all b1 + b2 = b and also 〈〈A0〉〉 © 〈〈Ab〉〉�ϕ

• if 〈〈Ab〉〉ϕUψ is in cl(ϕ0), then so are 〈〈Ab1〉〉©〈〈Ab2〉〉ϕUψ

for all b1 + b2 = b and also 〈〈A0〉〉 © 〈〈Ab〉〉ϕUψ

• if ϕ is in cl(ϕ0), then so is ∼ϕ (normal form negation of ϕ)

• cl(ϕ0) is also closed under finite positive boolean operators
(∨ and ∧) up to tautology equivalence.

Note that cl(ϕ0) is finite. Let Γ be a set of maximal consistent sub-
sets of cl(ϕ0). We define trees (T, V ) over Γ in exactly the same
way as in [7] (T is the set of nodes and V : T −→ Γ). Intuitively,
nodes in a tree are identified with finite words corresponding to the
sequence of joint actions by the grand coalition which leads to that
node. The root is the empty word ε and each node c corresponds
to a finite computation the last state of which is c. A formula is in
V (c) intuitively means that the formula is true in c. As in [7], the
construction proceeds in three stages. The first stage is producing
locally consistent trees, namely trees where the labelling satisfies
conditions on successor nodes which makes it possible to prove a
truth lemma for the next step modalities. The second stage is prov-
ing the existence of trees which realise eventualities (essentially,
make the labelling consistent with the truth conditions for the �

and U modalities). Finally, the finite trees realising eventualities
are combined into one infinite tree model.

DEFINITION 7. A tree (T, V ) is locally consistent if and only if
for any interior node t ∈ T :

1. if 〈〈Ab〉〉 © ϕ in V (t), then there is a move σA such that
cost(σA) ≤ b and for any c ∈ out(σA) we have ϕ ∈ V (c)

2. if ¬〈〈Ab〉〉©ϕ in V (t), then for any move σA with cost(σA) ≤
b, there exists c ∈ out(σA) where ¬ϕ ∈ V (c)

Two following lemmas are used as a crucial step in the local
consistency proof.

LEMMA 2. Let Φ = {〈〈Ab1
1
〉〉©ϕ1, . . . , 〈〈Abk

k 〉〉©ϕk,¬〈〈Ab〉〉©
ϕ} be a consistent set of formulas in which:

• all Ai are both non-empty and pairwise disjoint

• S

i Ai ⊆ A

• Σibi ≤ b

We have Ψ = {ϕ1, . . . , ϕk,¬ϕ} is also consistent.

LEMMA 3. Let Φ = {〈〈Ab1
1
〉〉©ϕ1, . . . , 〈〈Abk

k 〉〉©ϕk, 〈〈∅e1〉〉©
χ1, . . . , 〈〈∅em〉〉 © χm} be a consistent set of formulas in which:

• all Ai are both non-empty and pairwise disjoint

• Σibi ≤ ej for all j

We have Ψ = {ϕ1, . . . , ϕk, χ1, . . . , χm} is also consistent.

The proofs of the lemmas use axioms (S), (SN ), (S∅) and (B).

LEMMA 4. Let Φ be a finite consistent set of formulas. Let
Φ© be the subset of Φ which contains all formulas of the form
〈〈Ab〉〉 © ϕ or their negations. If |Φ©| < k, then there is a tree
(T, V ) which is of height one, branching factor kn, has V (ε) = Φ
and is locally consistent.

The proof is given in the Appendix.
The next stage of the proof is to consider what conditions on

tree labelling we need in order to be able to prove the truth lemma
for other temporal modalities. The definition of what it means to
‘realise’ formulas of the form 〈〈Ab〉〉ϕUψ, ¬〈〈Ab〉〉�ϕ, 〈〈Ab〉〉�ϕ,
¬〈〈Ab〉〉ϕUψ is similar to the one in [7] (essentially the truth con-
ditions for the formulas with ‘satisfied’ replaced by ‘in the labelling
of’). In what follows, Ψ© is the set of formulas of the form 〈〈Ab〉〉©
ϕ or ¬〈〈Ab〉〉 © ϕ from cl(ϕ0).

484



LEMMA 5. For each formula 〈〈Ab〉〉ϕ Uψ and x ∈ Γ, there is
finite tree (T, V ) over Γ such that:

• (T, V ) is of fixed branching degree kn where k = |Ψ©|+ 1

• (T, V ) is locally consistent

• V (ε) = x

• if 〈〈Ab〉〉ϕUψ ∈ x then (T, V ) realises 〈〈Ab〉〉ϕUψ from ε

LEMMA 6. For each formula ¬〈〈Ab〉〉�ϕ and x ∈ Γ, there is
finite tree (T, V ) over Γ such that:

• (T, V ) is of fixed branching degree kn where k = |Ψ©|+ 1

• (T, V ) is locally consistent

• V (ε) = x

• if ¬〈〈Ab〉〉�ϕ ∈ x then (T, V ) realises ¬〈〈Ab〉〉�ϕ from ε

The proofs of these lemmas are similar to the corresponding
proofs in [7], but also use induction on the bound b.

Now we have almost all the ingredients for constructing the model
for ϕ0. For each consistent set x in Γ and an eventuality ϕ of
cl(ϕ0), we have a finite tree (Tx,ϕ, Vx,ϕ) with the root having la-
bel x which realises ϕ. Let the eventualities in cl(ϕ0) be listed as
ϕe

0, . . . , ϕ
e
m. In the following, we have the definition of the final

tree.

DEFINITION 8. The final tree (Tϕ0 , Vϕ0) is constructed induc-
tively as follows.

• Initially, select an arbitrary x ∈ Γ such that ϕ0 ∈ x. As that
formula is consistent, such a set exists. Let (Tx,ϕe

0
, Vx,ϕe

0
) be

the initial tree.

• Given the tree constructed so far and the last used eventuality
ϕe

i . Then, for every leaf labelled by y ∈ Γ of the currently
constructed tree, we replace it with the tree (Ty,ϕe

j
, Vy,ϕe

j
) in

which j = i + 1 if i < m or j = 0 if otherwise.

Let Sϕ0 be the model which is based on (Tϕ0 , Vϕ0).

LEMMA 7. If 〈〈Ab〉〉ϕUψ or ¬〈〈Ab〉〉�ϕ is in the label of some
node t of (Tϕ0 , Vϕ0), it is realised from t.

LEMMA 8. If ¬〈〈Ab〉〉ϕUψ or 〈〈Ab〉〉�ϕ is in the label of some
node t of (Tϕ0 , Vϕ0), it is realised from t.

Finally, we show the following truth lemma.

LEMMA 9. For every node t of (Tϕ0 , Vϕ0) and every formula
ϕ ∈ cl(ϕ0), if ϕ ∈ Vϕ0(t) then Sϕ0 , t |= ϕ.

PROOF. The proof is done by induction on the structure of ϕ.

• For the cases of propositions, negative proposition and dis-
junction, the proofs are trivial.

• Assume ϕ = 〈〈Ab〉〉 © ψ, Lemma 4 ensures that there is
a move σ ∈ ΔA of cost at most b such that for all c ∈
out(t, σ), we have ψ ∈ V (tc). Then by the induction hy-
pothesis, we have that Sϕ0 , tc |= ψ. Then, Sϕ0 , t |= 〈〈Ab〉〉©
ψ

• Assume ϕ = ¬〈〈Ab〉〉 © ψ, Lemma 4 ensures that there is a
co-move σ ∈ ΔA such that for all c ∈ out(t, σ, b), we have
∼ ψ ∈ V (tc). Then by the induction hypothesis, we have
that Sϕ0 , tc |=∼ψ. Then, Sϕ0 , t |= ¬〈〈Ab〉〉 © ψ

• For the cases of 〈〈Ab〉〉ϕUψ, ¬〈〈Ab〉〉�ϕ, ¬〈〈Ab〉〉ϕUψ and
〈〈Ab〉〉�ϕ, the proofs are trivial due to the two previous lem-
mas.

Finally, we have the following theorem.

THEOREM 1. The axiom system for RB-ATL is sound and com-
plete.

4. MODEL-CHECKING RB-ATL
In this section we describe a model-checking algorithm for RB-

ATL which runs in time polynomial in the size of the formula and
the structure (if we treat the number of resources as a constant). The
algorithm is similar to the model-checking algorithm for ATL given
in [4]. The main differences from the algorithm for ATL are that
we need to take the costs of strategies into account, and, instead
of working with a straightforward set of subformulas Sub(φ) of
a given formula φ, we work with an extended set of subformulas
Sub+(φ). Sub+(φ) includes Sub(φ), and in addition:

• if 〈〈Ab〉〉�ψ ∈ Sub(φ), then 〈〈Ab′〉〉�ψ ∈ Sub+(φ) for all
b′ < b

• if 〈〈Ab〉〉ϕUψ ∈ Sub(φ), then 〈〈Ab′〉〉ϕUψ ∈ Sub+(φ) for
all b′ < b

THEOREM 2. Given a structure S = (n, r, Q, Π, π, d, c, δ) and
a formula φ, there is an algorithm which returns the set of states
[φ]S satisfying φ: [φ]S = {q | S, q |= φ}, which runs in time
O(|φ|2r+1 × |S|).

PROOF. Consider the following model-checking algorithm:

for every φ′ in Sub+(φ):

case φ′ == p: [φ′]S = {q | p ∈ π(q)}
case φ′ == ¬ψ: [φ′]S = Q \ [ψ]S

case φ′ == ψ1 ∧ ψ2: [φ′]S = [ψ1]S ∩ [ψ2]S

case φ′ == 〈〈Ab〉〉 © ψ: [φ′]S = Pre(A, [ψ]S , b)

case φ′ == 〈〈A0̄〉〉�ψ:
ρ := [true]; τ := [ψ]S ;
while ρ �⊆ τ do ρ := τ ; τ := Pre(A, ρ, 0̄) ∩ [ψ]S od;
[φ′]S := ρ

case φ′ == 〈〈Ab〉〉�ψ for b > 0:
ρ := [false]; τ := [false];
foreach b′ < b do

τ := Pre(A, [〈〈Ab′〉〉�ψ]S , b − b′) ∩ [ψ]S
while τ �⊆ ρ do

ρ := ρ ∪ τ ; τ := Pre(A, ρ, 0) ∩ [ψ]S
od

od;
[φ′]S := ρ

case φ′ == 〈〈A0〉〉ψ1Uψ2:
ρ := [false]; τ := [ψ2]S ;
while τ �⊆ ρ do ρ := ρ ∪ τ ; τ := Pre(A, ρ, 0) ∩ [ψ1]S
od;
[φ′]S := ρ

485



case φ′ == 〈〈Ab〉〉ψ1Uψ2 for b > 0:
ρ := [false]; τ := [false];
foreach b′ < b do

τ := Pre(A, [〈〈Ab′〉〉ψ1Uψ2]S , b − b′) ∩ [ψ1]S
while τ �⊆ ρ do

ρ := ρ ∪ τ ; τ := Pre(A, ρ, 0) ∩ [ψ1]S
od

od;
[φ′]S := ρ

Pre is a function which given a coalition A, a set ρ ⊆ Q and a
bound b returns a set of states q in which A has a move σA with
cost cost(q, σA) ≤ b such that out(q, σA) ⊆ ρ.

The cases for propositional variables, negation, conjunction and
〈〈Ab〉〉©ψ are straightforward. The cases where the resource bound
is 0 are also similar to [4]. However the cases for 〈〈Ab〉〉�ψ and
〈〈Ab〉〉ψ1Uψ2 for b > 0 have no counterpart in the ATL algorithm,
and we explain these in some detail. First, note that the cases for

〈〈A0〉〉�ψ and 〈〈A0〉〉ψ1 Uψ2 are the standard greatest and least
fixed point computations respectively, which consider only 0-cost

moves. In particular, [〈〈A0〉〉�ψ]S = Pre(A, [〈〈A0〉〉�ψ]S , 0) ∩
[ψ]S and [〈〈A0〉〉ψ1Uψ2]S = Pre(A, [〈〈A0〉〉ψ1Uψ2]S , 0)∩[ψ2]S .

[〈〈A0〉〉�ψ]S contain all states where A has a 0-cost strategy to
maintain ψ forever. Note that A has a b-cost strategy to maintain
ψ forever if and only if it has a b-cost strategy to force the system

into one of the [〈〈A0〉〉�ψ]S states, while maintaining ψ. In other
words, in order to compute 〈〈Ab〉〉�ψ for b > 0, we need to com-

pute 〈〈Ab〉〉ψU〈〈A0〉〉�ψ. This explains the similarity between the
cases of 〈〈Ab〉〉�ψ and 〈〈Ab〉〉ψ1 Uψ2 for b > 0. In the case of
〈〈Ab〉〉�ψ, in the first execution of the foreach b′ < b loop, we

have b′ = 0 and τ = Pre(A, [〈〈A0〉〉�ψ]S , b) ∩ [ψ]S , which in-

cludes Pre(A, [〈〈A0〉〉�ψ]S , 0) ∩ [ψ]S , hence it also includes

[〈〈A0〉〉�ψ]S . In the nested while loop, ρ accumulates the results
and τ adds the ψ-states from where A has a 0 strategy to enforce
the outcome to be in ρ. In the outer loop, b′ bounds are used in
some order consistent with <, namely satisfying the condition that
if bi < bj then bi is used before bj .

In the case for 〈〈Ab〉〉ψ1Uψ2 where b > 0, after the first iteration

of the foreach b′ < b loop, τ is [〈〈A0〉〉ψ1 Uψ2]S which includes
[ψ2]S . The rest is very similar to the case for 〈〈Ab〉〉�ψ where
b > 0.

Note that |{b′ | b′ ≤ b}| = br . If φ contains operators with
non-0 bounds, |Sub+(φ)| = |φ| × |φ|r . In the 〈〈Ab〉〉�ψ and
〈〈Ab〉〉ψ1 Uψ2 cases, the outer loop is executed |φ|r times and the
inner loop is executed in total at most |S| times. This gives us com-
plexity O(|φ| × |φ|r × |φ|r × |S|), or O(|φ|2r+1 × |S|). If r is
treated as a constant factor,1 we get complexity polynomial in |φ|
and |S|.

5. RELATED WORK
Recent work on Alternating-Time Temporal Logic and Coalition

Logic (for example, [9, 6, 10, 4, 7, 1]) has allowed the expression of
many interesting properties of coalitions and strategies. However,
there is no natural way of expressing resource requirements in these
logics.

Resources were considered in Coalitional Resource Games in

1We also treat the number of agents as a constant factor; the com-
plexity of ATL model-checking without this assumption was shown
to be exponential in the number of agents in [8]. Other assumptions
implicit in the formulation of the problem, such as the set of states
being given explicitly, are discussed in [11].

[12] from the point of view of decision complexity of various prop-
erties of games. A logic for describing such games and a model-
checking procedure for it were proposed in [2]; however the only
modality that logic has is 〈〈Ab〉〉© (only one step games were con-
sidered).

As mentioned in the introduction, resource bounds were added
to extended coalition logic in [3]; essentially the logic RBCL de-
scribed there has modalities 〈〈Ab〉〉� Uϕ. A sound and complete
axiomatisation for the logic is given, but no model-checking proce-
dure is described.

The model-checking problem for CTL∗ extended with resource
path quantifiers (RCTL∗) was studied in [5]. In [5], actions not
only consume but also produce resources. This potentially allows
for modelling and verifying a larger class of (single-agent) systems.
However it also significantly increases the complexity of model-
checking; in fact no decidability result or model-checking algo-
rithm are given for the general case of RCTL∗ or RCTL, only
for fragments of these logics.

6. CONCLUSIONS
We have provided a complete and sound axiomatisation of RB-

ATL, a logic which extends ATL with resource bounds. The result-
ing logic can express interesting properties of coalitions of agents
involving resource limitations. For example, it can express that a
coalition can maintain the system in a φ-state indefinitely given a fi-
nite amount of resources (this essentially means that after a while φ
can be maintained for free). We have also presented a polynomial-
time model-checking algorithm for RB-ATL.

The semantics for RB-ATL presented in this paper, in particu-
lar the assumption that actions only consume but never produce
resources, is motivated by verifying resource requirements for sys-
tems of agents where resources of interest are time, memory, band-
width etc., which cannot be generated by agents. It would be inter-
esting to also consider semantics where actions can have a negative
cost, such as in [5].

7. ACKNOWLEDGMENTS
This work was supported by the Engineering and Physical Sci-

ences Research Council [grant EP/E031226/1].

8. REFERENCES
[1] T. Ågotnes, W. van der Hoek, and M. Wooldridge. Reasoning

about coalitional games. Artif. Intell., 173(1):45–79, 2009.

[2] N. Alechina, B. Logan, N. H. Nga, and A. Rakib. Expressing
properties of coalitional ability under resource bounds. In
X. He, J. F. Horty, and E. Pacuit, editors, Logic, Rationality,
and Interaction, Second International Workshop, LORI 2009,
Proceedings, volume 5834 of Lecture Notes in Computer
Science, pages 1–14. Springer, 2009.

[3] N. Alechina, B. Logan, H. N. Nguyen, and A. Rakib. A logic
for coalitions with bounded resources. In C. Boutilier, editor,
Proceedings of the 21st International Joint Conference on
Artificial Intelligence, pages 659–664. AAAI Press, 2009.

[4] R. Alur, T. Henzinger, and O. Kupferman. Alternating-time
temporal logic. Journal of the ACM, 49(5):672–713, 2002.

[5] N. Bulling and B. Farwer. RTL and RTL∗: Expressing
abilities of resource-bounded agents. In J. Dix, M. Fisher,
and P. Novák, editors, Proceedings of the 10th International
Workshop on Computational Logic in Multi-Agent Systems,
pages 2–19, 2009.

[6] V. Goranko. Coalition games and alternating temporal logics.
In Proceeding of the Eighth Conference on Theoretical

486



Aspects of R ationality and Knowledge (TARK VIII, pages
259–272. Morgan Kaufmann, 2001.

[7] V. Goranko and G. van Drimmelen. Complete axiomatization
and decidability of alternating-time temporal logic. Theor.
Comput. Sci., 353(1-3):93–117, 2006.

[8] W. Jamroga and J. Dix. Do agents make model checking
explode (computationally)? In M. Pechoucek, P. Petta, and
L. Z. Varga, editors, Proc. 4th International Central and
Eastern European Conference on Multi-Agent Systems
(CEEMAS 2005), volume 3690 of Lecture Notes in
Computer Science, pages 398–407. Springer, 2005.

[9] M. Pauly. Logic for Social Software. Ph.D. thesis, ILLC,
University of Amsterdam, 2001.

[10] M. Pauly. A modal logic for coalitional power in games. J.
Log. Comput., 12(1):149–166, 2002.

[11] W. van der Hoek, A. Lomuscio, and M. Wooldridge. On the
complexity of practical ATL model checking. In
H. Nakashima, M. P. Wellman, G. Weiss, and P. Stone,
editors, 5th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2006), pages
201–208. ACM, 2006.

[12] M. Wooldridge and P. E. Dunne. On the computational
complexity of coalitional resource games. Artif. Intell.,
170(10):835–871, 2006.

APPENDIX
Proof of Lemma 1(1)
For convenience, let us denote f(X) = ‖ϕ‖ ∩ (‖〈〈Ab〉〉 © �ϕ‖ ∪
[〈〈A0〉〉©](X)). First we show that f(X) is monotone. Let X1 ⊆
X2 ⊆ Q. Let q ∈ f(X1), then q ∈ ‖ϕ‖ and either q ∈ ‖〈〈Ab〉〉 ©
�ϕ‖ or q ∈ [〈〈A0〉〉©](X1). By the definition of [〈〈A0〉〉©](), it is

easy to see that q ∈ [〈〈A0〉〉©](X2) if q ∈ [〈〈A0〉〉©](X1), hence
q ∈ f(X2).

Therefore, f(X) is monotone and there is a greatest fixed point
νX.f(X). We now show that Y = ‖〈〈Ab〉〉�ϕ‖ is a post-fixed
point of f(X), i.e. f(Y ) ⊆ Y . Let q ∈ Y . By the truth def-
inition, we have that there is a b-strategy FA such that for any
λ ∈ out(q, FA), λ[i] ∈ ‖ϕ‖ for all i ≥ 0. Then, q = λ[0] ∈ ‖ϕ‖.
Let b′ = cost(q, FA(q)). For every q′ ∈ out(q, FA(q)) we de-
fine a (b − b′)-strategy F ′

A which is the remainder of FA from
q′ as follows, F ′

A(κ) = FA(qκ) for all κ ∈ Qω starting at q′.
Then, for all κ ∈ out(q′, F ′

A), we have that qκ ∈ out(q, FA).
It is straightforward that any computation in out(q′, F ′

A) costs at
most b − b′. Then, for all i ≥ 0, we have that κ[i] ∈ ‖ϕ‖, hence

q′ ∈ ‖〈〈Ab−b′〉〉�ϕ‖. Thus, q ∈ [〈〈Ab′〉〉©](‖〈〈Ab−b′〉〉�ϕ‖).
If b′ �= 0, we have that q ∈ ‖〈〈Ab〉〉 © �ϕ‖, otherwise q ∈
[〈〈A0〉〉©](‖〈〈Ab〉〉�ϕ‖). This means that q ∈ f(‖〈〈Abϕ〉〉�‖).
In order to show that Y = ‖〈〈Ab〉〉�ϕ‖ is, in fact, the greatest fixed
point of f(X), we show that for every post-fixed point Z, Z ⊆ Y .
We show the inclusion by induction on the bound b.

In the base case, b = 0, we have f(X) = ‖ϕ‖ ∩ [〈〈A0〉〉©](X).

Assume q ∈ Z, then q ∈ ‖ϕ‖ ∩ [〈〈A0〉〉©](Z) as Z is a post fixed
point of f(X). We now define a 0-strategy FA which will maintain
ϕ for any consistent computation. The definition will be done by
induction on the length of inputs for FA. Moreover, we only define
FA for inputs which will be used later for the coalition to determine
which joint action to perform in order to maintain ϕ. Let inputn

denote the set of such inputs of length n. Initially, input1 = {q}.
We will define FA and inputi+1 inductively on i so that the last
element of any member of inputi+1 is always in Z.

• When i = 1, we have that q ∈ ‖ϕ‖ and there is a move σA ∈
DA(q) with cost(q, σA) = 0 such that out(q, σA) ⊆ Z. Let
FA(q) = σA and input2 = {qq′ | q′ ∈ out(q, FA(q))}. For
any such q′, we have q′ ∈ Z ⊆ f(Z).

• When i > 1, for any λ ∈ inputi, we have that λ[i − 1] ∈
Z ⊆ f(Z) by the induction hypothesis. We have that λ[i −
1] ∈ ‖ϕ‖ and there is a move σA ∈ DA(λ[i − 1]) with
cost(λ[i − 1], σA) = 0 such that out(λ[i − 1], σA) ⊆ Z.
Let FA(λ) = σA and inputi+1(λ) = {λq′ | q′ ∈ out(λ[i −
1], FA(λ))}.

Finally, we define inputi+1 =
S

λ∈inputi inputi+1(λ) By

definition of inputi+1(λ), it is easy to see that for any λ′ ∈
inputi+1, λ′[i] ∈ Z ⊆ f(Z).

After defining FA, we have that for any λ ∈ out(q, FA) and i ≥ 0,
λ[0, i] ∈ inputi+1, hence λ[i] ∈ Z ⊆ f(Z). Therefore, λ[i] ∈
‖ϕ‖. This shows that q ∈ Y .
In the induction step, b > 0, we have f(X) = ‖ϕ‖ ∩ (‖〈〈Ab〉〉©
�ϕ‖ ∪ [〈〈A0〉〉©](Z)). Assume q ∈ Z, then q ∈ ‖ϕ‖ and either

q ∈ ‖〈〈Ab〉〉 © �ϕ‖ or q ∈ [〈〈A0〉〉©](Z). Similarly to the base
case, we also define a b-strategy FA which will maintain ϕ for
any consistent computation. The definition will be also be done
by induction on the length of inputs for FA. Moreover, we only
define FA for inputs which will be used later for the coalition to
determine which joint action to perform in order to maintain ϕ.
Let inputn denote the set of such inputs of length n. Initially,
input1 = {q}. We will define FA and inputi+1 inductively on
i such that the last element of any member of inputi+1 is always
either in ‖〈〈Ab2〉〉�ϕ‖ if the accumulated cost along that member
is no more than b1 for some b1 + b2 = b or in Z if the same cost is
zero.

• When i = 1, we have that q ∈ ‖ϕ‖ and either q ∈ ‖〈〈Ab〉〉©
�ϕ‖ or q ∈ [〈〈A0〉〉©](Z). If q ∈ ‖〈〈Ab〉〉 © �ϕ‖, there is
b1 + b2 = b such that q ∈ [〈〈Ab1〉〉©](‖〈〈Ab2〉〉�ϕ‖). Then,
there is a move σA ∈ DA(q) with cost(q, σA) ≤ b1 such that
out(q, σA) ⊆ ‖〈〈Ab2〉〉�ϕ‖. By the induction hypothesis, for
any q′ ∈ out(q, σA), there is another b2-strategy from q to
maintain ϕ, we define FA(qq′λ) = F ′

A(q′λ) for all λ ∈ Q∗.
Let FA(q) = σA and input2 = {qq′ | q′ ∈ out(q, σA)}. It
is obvious that all such q′ ∈ ‖〈〈Ab2〉〉�ϕ‖ and the cost along
qq′ is at most b1.

If q ∈ [〈〈A0〉〉©](Z)), there is a move σA ∈ DA(q) with
cost(q, σA) ≤ 0 such that out(q, σA) ⊆ Z. Let FA(q) =
σA and input2 = {qq′ | q′ ∈ out(q, σA)}. It is obvious that
all such q′ ∈ Z and the cost along qq′ is zero.

• When i > 1, for any λ ∈ inputi, we have that either (i) λ[i−
1] ∈ ‖〈〈Ab2〉〉�ϕ‖ if

P

j<i−1
cost(λ[j], FA(λ[0, j])) ≤ b1

for some b1 + b2 = b or (ii) λ[i − 1] ∈ Z ⊆ f(Z) if
P

j<i−1
cost(λ[j], FA(λ[0, j])) = 0 by the induction hy-

pothesis.
(i) If λ[i − 1] ∈ ‖〈〈Ab2〉〉�ϕ‖, then FA has been defined.
Let inputi+1(λ) = {λq′ | q′ ∈ out(λ[i − 1], FA(λ[0, i −
1]))}. Let b′ = cost(λ[i − 1], FA(λ[0, i − 1])). By the in-
duction hypothesis, as b2 < b, we have that all such q′ ∈
‖〈〈Ab2−b′〉〉�ϕ‖ and

P

j<i cost(λ[j], FA(λ[0, j])) ≤ b1 +

b′.
(ii) If λ[i − 1] ∈ Z ⊆ f(Z), then λ[i − 1] ∈ ‖ϕ‖ and ei-
ther (ii-1) λ[i − 1] ∈ ‖〈〈Ab〉〉 © �ϕ‖ or (ii-2) λ[i − 1] ∈
[〈〈A0〉〉©](Z).
(ii-1) If λ[i − 1] ∈ ‖〈〈Ab〉〉 © �ϕ‖, there is b1 + b2 = b
such that λ[i − 1] ∈ [〈〈Ab1〉〉©](‖〈〈Ab2〉〉�ϕ‖). Then, there

487



is a move σA ∈ DA(λ[i − 1]) with cost(λ[i − 1], σA) ≤ b1

such that out(λ[i − 1], σA) ⊆ ‖〈〈Ab2〉〉�ϕ‖. By the induc-
tion hypothesis, for any q′ ∈ out(λ[i], σA), there is another
b2-strategy from q to maintain ϕ, we define FA(λq′κ) =
F ′

A(q′κ) for all κ ∈ Q∗. Let FA(λ) = σA and inputi+1(λ) =
{λq′ | q′ ∈ out(λ[i−1], σA)}. Then, for all such q′ we have
q′ ∈ ‖〈〈Ab2〉〉 © �ϕ‖ and

P

j<i cost(λ[j], FA(λ[0, j])) ≤
b1.
(ii-2) If λ[i − 1] ∈ [〈〈A0〉〉©](Z)), there is a move σA ∈
DA(λ[i−1]) with cost(λ[i−1], σA) = 0 such that out(λ[i−
1], σA) ⊆ Z. Let FA(λ) = σA and inputi+1(λ) = {λq′ |
q′ ∈ out(λ[i − 1], σA)}. Then, for all such q′, we have that
q′ ∈ Z and

P

j<i cost(λ[j], FA(λ[0, j])) ≤ 0.

So, inputi+1 =
S

λ∈inputi inputi+1(λ). After defining FA,

we have that for any λ ∈ out(q, FA) and i ≥ 0, λ[0, i] ∈
inputi+1, hence λ[i] ∈ Z ⊆ f(Z). Therefore, λ[i] ∈ ‖ϕ‖.
This shows that q ∈ Y .

So, Y is the greatest post-fixed point of f(X), hence also the great-
est fixed point of f(X).

Proof of Lemma 4
Firstly, we have ¬〈〈Nb〉〉 © ϕ and ¬〈〈∅b〉〉 © ϕ are equivalent to
〈〈∅b〉〉 © ¬ϕ and 〈〈Nb〉〉 © ¬ϕ, respectively. Therefore, we only
consider the case when Φ© does not contain formulas of the form
¬〈〈Nb〉〉 © ϕ and ¬〈〈∅b〉〉 © ϕ.

Let us assume that

Φ© = {〈〈Ab0
0
〉〉 © ϕ0, . . . , 〈〈Abm−1

m−1
〉〉 © ϕm−1}∪

{¬〈〈Bd0
0
〉〉 © ψ0, . . . ,¬〈〈Bdl−1

l−1
〉〉 © ψl−1}∪

{〈〈∅e0〉〉 © χ0, . . . , 〈〈∅eh−1〉〉 © χh−1}
where all Ai are non-empty, all Bi are both non-empty and not
equal to the grand coalition N .

Let e be a bound of resources such that e > ei for all i ∈
{0, . . . , h − 1}. We construct a tree with a root labelled by Φ
and nk children, each is denoted by c = (a1, . . . , an) in which
ai ∈ {0, . . . , k − 1}. Intuitively, we allow each agent i to perform
k different actions denoted by numbers from 0 to k − 1, where the
special action k−1 for all agents will be considered as the zero-cost
idle action. We shall denote c(i) = ai for the action performed by
agent i with the corresponding outcome c. Now we define the label

V (c) for each such node c. For each 〈〈Abp
p 〉〉 © ϕp ∈ Φ© wherein

Ap �= ∅, ϕp is added to V (c) whenever c(i) = p for all p ∈ Ap.
Let minAP be the smallest number in AP , we assign the cost of
action p performed by minAP be bp, i.e. cost(p, minAp) = bp.

For all other j ∈ Ap which is not minAP , we set cost(p, j) = 0.

After considering all such 〈〈Abp
p 〉〉 © ϕp ∈ Φ©, for all other

unsigned-cost actions, i.e. actions ≥ m − 1 but < k − 1 for all
agents, we simply set their costs to be e. The action k−1 performed
by all agents is defined to associate with the cost 0. We denote
cost(c) = Σicost(c(i), i). Then, for each 〈〈∅ep

p 〉〉©χp ∈ Φ©, χp

is added to V (c) whenever cost(c) ≤ bp.
Finally, we will add at most one formula from the negation for-

mulas of Φ© to V (c). We denote cost(c, A) = Σi∈Acost(c(i), i).
For each c, let Φ−

©(c) = {¬〈〈Bd〉〉 © ψ ∈ Φ© | cost(c, B) ≤
d} = {¬〈〈Bdi0

i0
〉〉 © ψi0 , . . . ,¬〈〈Bdlc−1

ilc−1
〉〉 © ψlc−1} in which

i0 < i1 < . . . < ilc−1. Let Ic = {i | m ≤ c(i) < m + lc}
and j = Σi∈Ic(c(i) − m) mod lc. Consider ¬〈〈Bdj

ij
〉〉 © ψj : if

N \ Bij ⊆ Ic, then ¬ψij is added into V (c).
We now need to show that our simple tree is locally consistent.

In the first step, we show that all labels are consistent. It is obvious

that V (ε) = Φ is consistent.
Let us firstly consider every child c of the root in which ¬ψq ∈

V (c) from some negation formula in Φ©. This will imply that
there will be no χ ∈ V (c) from the formulas of the form 〈〈∅b〉〉©χ
in Φ©. The reason is that as some ¬ψq ∈ V (c), there will be some
agent performing an action i ≥ m. As the cost of this action is e,
cost(c) ≥ e, hence, no χ will be added into V (c).

When there is no ϕ ∈ V (c) from the formulas of the form
〈〈Ab〉〉 © ϕ in Φ©, the proof is trivial as there is only one ¬ψq ∈
V (c). If there are some ϕp ∈ V (c) where 〈〈Abp

p 〉〉 © ϕp ∈ Φ©,
then for each p, c(i) = p < m for all i ∈ Ap. Hence, all
Ap are pairwise disjoint. Moreover, we have that Bq ⊇ N \ Ic

and all agents in
S

ϕp∈V (c) Ap perform some action < m, hence

Bq ⊇ S

ϕp∈V (c) Ap. From the selection of ψq , we also have

that dq ≥ Σi∈Bq cost(c(i), i) ≥ Σi∈S
ϕp∈V (c) Apcost(c(i), i) ≥

Σϕp∈V (c)bp. This simply shows that the set of 〈〈Abp
p 〉〉©ϕp ∈ Φ©

where ϕp ∈ V (c) and ¬〈〈Bdq
q 〉〉 © ψq satisfies the conditions of

Lemma 2. Therefore, V (c) is consistent.
Now, we consider every child c of the root in which there is no

¬ψ ∈ V (c) from some negation formula in Φ©.
When there is no ϕ ∈ V (c) from the formulas of the form

〈〈Ab〉〉©ϕ in Φ©, the proof is trivial as there are at most only some

χq ∈ V (c). If there are some ϕp ∈ V (c) where 〈〈Abp
p 〉〉 © ϕp ∈

Φ© and Ap �= ∅, then for each p, c(i) = p < m for all i ∈ Ap.
Hence, all Ap are pairwise disjoint. For any χq ∈ V (c) by some
〈〈∅eq 〉〉©χq ∈ Φ©, we have that eq ≥ cost(c) ≥ Σpbp. This sim-

ply shows that the set of 〈〈Abp
p 〉〉 © ϕp ∈ Φ© where ϕp ∈ V (c)

and 〈〈∅eq
q 〉〉 © χq satisfies the conditions of Lemma 3. Therefore,

V (c) is consistent.
Let us now check the conditions of local consistency on the

newly built tree. For 〈〈Abp
p 〉〉©ϕp ∈ Φ©, it is straightforward that

the move σAp where all agents in Ap perform action p < m of cost

bp and for any c ∈ out(σAp), ϕp ∈ V (c). For ¬〈〈Bdp
p 〉〉 © ψp ∈

Φ© and σ being an arbitrary move of agents in Bp with cost at
most equal to dp, we will point out an output c ∈ out(σBp) such
that ¬ψp ∈ V (c). That is, we need to select suitable actions for
agents outside Bp such that the output’s label will contain ¬ψp.
We will select only actions ≥ m for those agents, then their costs
are fixed at e. That is to say even without knowing which actions
are performed by agents out of Bp, we know the cost of each ac-
tion as well as the total cost of c. Hence, lc is determined as well as

the set Φ−
©(c) = {¬〈〈Bdi0

i0
〉〉©ψi0 , . . . ,¬〈〈Bdilc−1

ilc−1
〉〉©ψilc−1}

where p = ir for some r < lc. Let σi be the action performed
by agent i in Bp, we have c(i) = σi for all i ∈ Bp. Let I ′ =
{i ∈ Bq | m ≤ c(i) < m + lc} and j′ = Σi∈I′(c(i) − m)
mod lc. We select an arbitrary i /∈ Bp and set c(i) = m+(r− j′)
mod lc. For all other i /∈ Bp, let c(i) = m. Then, we have
Ic = {i | m ≤ c(i) < m+ lc} and Σi∈I(c(i)−m) mod lc = r,
hence ¬ψp ∈ V (c). Notice that an action ≥ m and < k−1 always
costs e.

488


